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In this article the total sampling time and number of samples required to pro-
duce a sample mean having a specified variance is evaluated for various sampling
intervals. The samples are assumed to be the correlated outputs of either a first- or
second-order system having a white gaussian noise input. It is found that a reduc-
tion in both the total time and the number of samples can often be obtained for a
given variance and sampling interval if the sampling is performed at the output
of a second order system. These results are then applied to the automatic gain
control sampling presently being used for carrier power estimation to show how

its accuracy can be improved.

1. Introduction

It is a well-known result that the variance of the sample
mean of a random process (o) is related to the variance
of the process itself (¢2) by

oy == (1)

(where N is the number of samples) provided each of the
samples is uncorrelated with all of the others. However,
in practice the time required to obtain N independent
samples (for large N) may become so large as to make it
impractical. For such cases, correlated sampling must be
performed.

When a sample mean is compiled from correlated sam-
ples the conditions necessary for Eq. (1) to hold are vio-
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lated. Davenport and Root (Ref. 1) considered this
problem and derived the relationship

N-1
ok _ 1,2 k\ %
7—ﬁ+ﬁ§ :(1_N>R(kt°) @)
k=1

where R (t) is the normalized covariance function of the
process and t, is the sampling interval. Unfortunately,
solution of this equation for N (or equivalently the total
time T = Nt,) becomes exceedingly difficult for even
moderately small given vaues of ¢f/0? Consequently, it
is the purpose of this paper to investigate the properties
of Eq. (2) for covariance functions which result from the
application of white gaussian noise to first and second
order systems. In doing this, we shall find that a signifi-
cant advantage can be obtained if the sampling is per-
formed at the output of a second-order system.
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Finally, as an application of these results, the technique
of sampling the automatic gain control (AGC) voltage for
carrier signal power estimation will be examined. Accu-
racies available using the existing sampling procedure
will be given and then compared with the accuracies
attainable using the correlated sampling results.

Before proceeding, a comment regarding notation is in
order. The ratio ¢%/¢® occurs quite often and hence will
be designated by ¢%/0®> = \. Whenever the limiting case
(continuous sampling) of X is considered, it will be identi-
fied by A, where

- 2
Ao = lim {-U—f}
N g
T = Nt, = constant

Finally, it is important to note that when the properties of
a function are illustrated graphically, it is often neces-
sary to normalize the ordinate and/or abscissa. Since nor-
malization constants may differ for different covariance
functions, it is necessary to use caution when making
quantitative comparisons.

Il. Correlated Sampling in First-Order Systems

Consider a first-order system having a transfer function

where a is a real constant greater than zero. If this system
is disturbed by zero mean white gaussian noise having a
two-sided spectral density of N,/2 the resulting output
covariance function will be

Noa
4 °exp(—a|r|)

R(z) =

Substituting the normalized covariance function into
Eq. (2) we obtain the relationship between A, N and ¢.

N-1
1 2 k
)‘:ﬁ+ﬁ E <l~ﬁ) exp (—akt,); >0 (3)
k=1

Equation (3) was evaluated numerically with the results
given in Figs. 1a and 1b. Figure la represents the relation-
ship between the total elapse sampling time T = Nt, and
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the sampling interval ¢, for various values of . For con-
venience of illustration both the ordinate and abscissa
have been normalized by the reciprocal of a. In Fig. 1b
we see the relationship between the required number of
samples (N) and the normalized sampling interval (at,).

Also shown in Figs. 1a and 1b are dashed lines corre-
sponding to the independent sampling case when A = 0.05.
We see that both the elapse time and the required number
of samples asymptotically approach the independent sam-
pling case as the sampling interval increases. This is not
surprising, since from Eq. (3), as t, becomes large the sec-
ond term will die out, leaving

A

s to—>

2|~

Even more important is the fact that for all A the total
sampling time is a non-decreasing function of #,. This
implies that for each A there corresponds a minimum
elapse time (continuous sampling time) such that for any
sampling duration less than this minimum time the corre-
sponding A cannot be achieved. To evaluate this minimum
time, consider Eq. (2) with the substitution N = T/¢,.
Taking the limit as N goes to infinity with T held con-

stant yields
2 (T t\ ~
)\m—Tﬁ (1—7>R(t)dt (4)

Substituting the normalized covariance function for the
first-order system produces

-2 ot _
Ao = oT + 7T (e 1)
=T for aT large (5)

Equation (5) is illustrated in Fig. 1c where as before the
elapse time has been normalized by the reciprocal of a.

lll. Correlated Sampling in Second-Order System

Consider a second-order system having a transfer
function

ab
PO ra6+n

Depending on the nature of the poles we see that there

are three important cases for F (s). Each of these will be
considered separately.
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A. Distinct Real Poles,a > b >0

The covariance function for this system is given by

Noab
R6) = g Ts [0 (~blr) —z ] (@

where the substitution z = b/a < 1 has been made in the
normalized covariance function of Eq. (6). The normal-
ized portion of Eq. (6) is illustrated in Fig. 2 where the
time axis has been normalized by the reciprocal of b.

As before, Eq. (2) is evaluated using this covariance
function with the results shown in Fig. 3 for z = %4.
Figure 3a illustrates the relationship between the elapse
time and sampling interval with both axes normalized by
1/b. One of the independent sampling results is included
for comparison.

As in the previous case the elapse time begins at some
minimum value and increases asymptotically to the inde-
pendent sampling result. The lower bound for the elapse
time is given by

_2(1+2) 2 e
‘== “wrra—m L
2z° bT /%
o=t (7)

or as bT becomes large

2(1+
20 H3)

= T

Equation (7) is illustrated in Fig. 3c with the time axis
normalized by 1/b.

B. Equal Real Poles a=b >0

By exactly the same procedure as before one obtains

N,
R{r) = g *(1+alr|)exp(—al|7]) (8)
and
4 2 6
— — _—pal . — p-aT
Moo aT+aTe (@l (1 — e ) (9)
with
A ~3 foraT large
w = = oraT large.
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Equation (8) is shown in Fig. 4. The results of the sam-
ple variance equation and a plot of Eq. (9) are given in
Fig. 5. In both figures the time axes have been normalized
by 1/a.

C. Complex Conjugate Poles a = o« + j8 = b*

For this system the transfer function is

. o + 2
FO = e Tatimeta—ip

and the corresponding covariance function is given by

__ No(a® + 8%) a7 sin ez | 7|
R(s) = " e <cos azr + " ) (10)
where z = 8/a. Equation (10) is illustrated in Fig. 6 for
z equals 1, 2, and 4 with the time axis normalized by the
reciprocal of «.

For the first time we see a marked change in the struc-
ture of the covariance function. For certain regions of the
time axis the covariance becomes negative. One would,
therefore, expect the sampling performance to depart from
the trends established in the previous cases.

By evaluating Eq. (2) with the normalized version of
Eq. (10) one obtains the curves shown in Fig. 7. Figures
7a and 7b show only the case for A = 1/256, but similar
curves are obtained for other values of A. The correspond-
ing independent sampling result is also shown. The con-
tinuous sampling limit is determined from Eq. (4) to be

= 4 __283—%)
* aT(1+2) [oT (1+22)]2
2e-T {(3 — 2%) cos azT + (1———Z3Z) sin azT}

+ [T (LT 21

(11)

and is shown in Fig. 7c. All the time axes of Fig. 7 are
normalized by the reciprocal of a.

From Figs. 7a and Tb we see that the expected depar-
ture from the previous results did, in fact, occur. In the
previous cases the sampling time approached the inde-
pendent sampling result asymptotically from above. For
the complex pole case, however, we see that for certain
ranges of the sampling interval, the total time and re-
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quired number of samples actually fall below the inde-
pendent sampling result. Since the independent sampling
result depends on A and not on the system time constants,
one can conclude that significant time savings can be
achieved when sampling of second-order systems.

IV. Application to Carrier Power Estimation
Accuracy

To see how the correlated sampling results can be
applied, let us consider the sampling of the DSIF receiver
AGC voltage for received carrier signal power estimation.
The receiver AGC voltage is derived from a coherent
amplitude detector and used to stabilize the output of a
variable gain IF amplifier. The AGC voltage will, there-
fore, have some functional relationship with the received
signal power. The DIS monitor computer samples this
voltage with a sampling interval of 1.0 s and forms a
sample mean of five samples. The sample mean is then
applied to an approximate inverse functional to obtain
an estimate of the received signal power.

Let us assume that the inverse functional is exact. It is
desired to estimate the error in the signal power estimate
due to the AGC sampling. To do this, the accuracy avail-
able using the existing sampling scheme will first be com-
puted. Then the previous results will be applied to show
how, in some cases, the accuracy can be improved. In both
cases the receiver is assumed to have an operating noise
temperature of 40 K and be configured for the narrow
tracking loop bandwidth.

To compute the accuracy of the AGC sampling it is
necessary to determine the variance of the AGC voltage.
This can be done by using the results of Chapters 7 and 8
of Tausworthe (Ref. 2). Using Tausworthe’s notation this
variance is given by

-2 (5 24

+ 2 (log eo3)? W”] Cz(0) (12)

W,

where K is the receiver gain. Values for W, and o} can be
computed from Egs. (8)-(13), (8)~(15), (8)~(17) and
(8)—(18) of Tausworthe’s report. The remaining entries
can be computed from his Chapter 7.

In order to use Eq. (12), however, it is necessary that
the log power gain of the variable IF amplifier be a linear
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function of the AGC voltage. Specifically, it is necessary
that

20 log <Ai> — K, + K, C (f) (13)

A more accurate expression for this gain is

201og (Ai) = 55.69 + 13.05C (¢) + 1.006 C2 ()
+0.105C? (t) (14)

However, Eq. (12) can still be used if Eq. (14) is linear-
ized about its operating point. This was accomplished by
computing the AGC voltage using the global approximate
values K; =54 dB and K, =12.2 dB/V. Evaluating
Eq. (14) and its derivative at this value of C (¢) results in
new values for K%z and K. Upon substitution of these new
values into Eq. (12) the desired variance was obtained.
In addition a new value of C (t) was computed using the
updated values of K; and K as a check. The results are
illustrated in Table 1 for the narrow, medium, and wide
AGC bandwidths.

The entries of Table 1 were also used to determine the
3¢ accuracy of the carrier power (P;) estimate by using
a 12.2 dB/V conversion factor. These results are shown
in Fig. 8.

Finally, note that the AGC circuit is essentially a first-
order system. It would be interesting to see if some bene-
fit could be obtained by converting this system (by means
of a compensating filter) to an equivalent second-order
system. For equivalence it is necessary that the output
variance, or equivalently the noise bandwidths, of the
two systems be identical. If the first-order transfer func-
tion is

a
Bl =7
and the second-order transfer function is given by

_ az_*_BZ
B = T merea—ip

with 2 = B/a, then the normalization constants used in
Subsections II and III are related by

2a
z2+1

a =

(15)

Now, if we desire to know the elapse sampling time re-
quired to produce some 3¢ power estimate accuracy (e.g.,
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0.1 dB) we can use Eq. (2) with the appropriate covari-
ance function and the relationship given in Eq. (15).
Figure 9 illustrates the results for the three AGC band-
widths and a second-order parameter value z =4. The
first-order results are identified by a (@) and the second
order by . The solid vertical line depicts the set of all
elapse sampling times less than or equal to 5 s and at a
sampling interval of 1.0 s (the presently used sampling
parameters).

It is clear from Fig. 9a that for a narrow AGC band-
width it is more beneficial to sample from a first-order
system. For the medium bandwidth, however, a signifi-
cant decrease in elapse time can be obtained if the sam-
pling is performed at the output of a second-order system.
For example, if it is desired to estimate a power level of
—155 dBmW with 0.1 dB accuracy, it is necessary only
to double the sampling time. For the first-order system,
however, a 4-to-1 increase is required. Finally, for the

wide AGC bandwidth little benefit can be obtained from
either system unless the sampling interval becomes quite
small.,

V. Conclusion

Contained herein is a set of curves relating the cor-
related sampling parameters for first- and second-order
systems. Furthermore, it was noticed that for specific
sampling intervals a significant improvement in both the
sampling time and required number of samples can be
achieved if the sampling is performed at the output of an
equivalent second-order system. In particular, it was no-
ticed that approximately a 2-to-1 improvement resulted
when this technique was applied to the AGC sampling
for the medium AGC bandwidth. This may be of some
interest for the Pioneer F and G missions where it is
anticipated that the medium AGC bandwith will be used.
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Table 1. Computed values of AGC voltage mean and

variance for narrow carrier tracking loop
bandwidth and T,, = 40K

Recei.ved Average AGC variance, V*

;:‘r::: AGC, Narrow Medium Wide
dBmV\/ v bandwidth bandwidth bandwidth
—110 —6.85 522 X 107 584 X 10" 496 X 107
—115 —6.39 522 X 10" 584 X 10 496 X 107
—120 —5.91 523 X 10® 585 X 107® 497 X 107"
—125 —5.35 527 X 1002 589 X 107" 501 X 107
—130 —5.19 538 X 10 601 X 10 5,11 X 10”°
—135 —4.64 571 X 107 638 X 10° 543 X 10°
—140 —4.17 6.68 X 10° 746 X 10°  6.34 X 107
—145 —3.71 8.80 X 10° 994 X 107  8.44 X 107°
—150 —3.27 1.13 X 10°° 1.26 X 10°  1.07 X 10
—155 —2.84 1.06 X 10°  1.18 X 107* 1.00 X 107®
—160 —2.43 7.62 X 10° 852 X 10* 724 X 107
—165 —2.07 496 X 10 554 X 10 471 X 107
—170 ~—1.85 3.22 X 107 3.60 X 107  3.06 X 107
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(a) required sampling time, (b) required number of sam-
ples, (¢) continuous sampling limit
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Fig. 2. Normalized covariance function of second-order
system with distinct real poles and z = %
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